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Abstract

Security is of paramount importance in today’s world. Public places such as shopping malls, banks, ATMs,

city squares, and parks are increasingly equipped with CCTV cameras. These cameras aid in monitoring

these spaces and keeping them safe for citizens to use. However, such a large amount of video data cannot

be constantly monitored in real-time by humans. Such monitoring would require trained, vigilant workers

whose sense of judgement can be trusted. Anomalous behaviour is rare, making the job harder to perform

for humans. Additionally, the definition of such behaviour varies by time, place and context. As a result,

there is a large demand for this monitoring to be automated. Such automation would need to be accurate,

fast and reliable. It would lead to better security and enable monitoring in a larger area. This work aims to

use unsupervised deep learning networks to automatically identify anomalies in such data and report them

in real-time.
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Chapter 1

Introduction

Closed-circuit television (CCTV) was first developed in the late 1920s. It involves sending signals from

specific video cameras to another location, usually a monitoring room. This system was initially developed

during World War II for weapon testing purposes [1], where scientists and engineers could not safely observe

the impact of these weapons. This wartime technology was then commercialised, which eventually led

to the widespread use of CCTV we see today for surveillance purposes. The early implementations of

this technology involved live monitoring, as there was no way to write information to a storage device. As

technology improved, recording this information for later use became possible. The convenience this provided

led to the technology becoming very popular. With time, it also became easier to incorporate a multitude

of cameras into a single monitoring system. In recent years, miniature cameras that can be attached to a

person’s body, known as body cams, have gained popularity, particularly within law enforcement. Today,

this technology is widespread worldwide, used on all scales, from individuals to large organisations, from

homeowners to the government. [2]

1.1 Motivation

According to a recent market report by IHS Markit ([3] [4]), approximately 770 million CCTV cameras are

present in 150 of the world’s major cities. These cameras are primarily used for monitoring and surveillance

purposes, mainly in the public sector, such as retail stores, malls and small businesses. Recently, there has

been a rise in CCTV monitoring amongst homeowners. In both settings, cameras are primarily used as a

deterrent to crime, as well as for crime-solving in the event of said crime. Major cities also use these cameras

on their roads, not as speed cameras, but as a way to monitor traffic flow and inform decisions related to

traffic management. Organisations may also use these cameras to monitor their employees. This monitoring

is seen more commonly in warehouses and factories than in corporate offices.
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1.1.1 Purpose

The monitoring of multiple streams of CCTV footage usually takes place in a central monitoring room. It

may be staffed by numerous security personnel. However, commonly, it is only staffed by a single person or,

in some cases, none and serves only to record information, particularly for small organisations or businesses.

In such cases, it becomes increasingly difficult for the staffed personnel to monitor all the streams with a

high enough level of attention. The problem only gets worse with an increase in cameras. This issue makes it

much easier for mistakes to occur, leading to damages, physical or otherwise, to the concerned organisation.

This work aims to alleviate the problem mentioned above by developing an end-to-end pipeline that can

monitor these camera feeds directly and inform the system if any abnormal activity occurs. This pipeline

consists of data ingestion from camera feeds, pre-processing this video data into separate frames that can be

used by a machine learning model, the model itself, and finally the reporting of the outcome of the model.

We aim not to build an all-encompassing model that can work on any camera feed. Instead, we aim to

construct a robust model architecture that can be trained on a per camera basis, which can then be deployed

to any CCTV system. The intended end user for this pipeline is any person who requires a robust security

system, whether that be a simple shopkeeper or a trained security guard. As such, the pipeline must be easy

to deploy and provide results that are easily readable and approachable.

With such a pipeline in place at any location, the security personnel’s attention can be directed to events

that truly matter instead of being wasted on monitoring otherwise uneventful streams.

1.1.2 Scope

We have set a few expectations and limitations for the project due to the time constraints and implementation

details:

• A single model architecture must work across different datasets, with different training, testing, and

validation data.

• The model must run be performant on low-end dedicated GPUs without sacrificing performance in

meaningful metrics.

• The datasets used must use stationary cameras. This includes data from traditional surveillance

cameras but excludes body cams or vehicle cameras.

• We would like to stress that the goal of this model is only to detect anomalies reliably. We do not

concern ourselves with the exact details of each anomaly, as other object detection methods can handle

this.
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1.2 Outline

The upcoming Chapter 3 addresses the theoretical and practical background necessary to grasp the scope

of this work entirely. Chapter 4 discusses the model we have arrived at through this research and the data

used to evaluate it. Chapter 5 will scrutinise the results and the methods taken to produce them. Finally,

we will summarise what we have achieved and give an outlook on what avenues future research in this area

could take.
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Chapter 2

Theoretical and Practical Background

We have used an unsupervised machine learning algorithm to achieve our results in this project. In this

section, we break down the constituent parts of this model.

2.1 Previous Work Done

There has been considerable work done in the field of anomaly detection in surveillance footage already [5].

These methods have used machine learning techniques in both supervised and unsupervised contexts. They

have used PCA ([6] [7]), SVMs ([8] [9] [10]), isolation forests ([11]), K-means clustering ([12]), Gaussian

mixture models ([13] [14]). In particular, one class SVMs, or OC-SVMs, are a popular technique. However,

their performance starts to degrade as the size and complexity of the data increases. Approaches have

been suggested to alleviate this scalability problem ([10] [15] [16] [17]). A deep clustering embedding (DEC)

algorithm that integrates an unsupervised autoencoder with a clustering network has also been shown to be

successful in these types of tasks. [18]

Broadly, there are three prevalent types of approaches to this problem [19]:

1. Deep learning for feature extraction: The deep learning part of the model is separated from the anomaly

detection aspect. The deep learning network is used for independent feature extraction from the data,

which is then interpreted separately.

2. Learning feature representations of normality: The two parts of the model are more closely linked here,

with the normality or some other measure of anomalies used to influence the learning of the network.

3. End-to-end anomaly score learning: There are no two separate parts to the model. It is a complete end

to end machine learning model that is used to learn the anomaly scores and evaluate the final results.

Another approach that has seen some research interest is to use transfer learning to train a deep learning

model with pre-trained layers from popular networks such as AlexNet ([20]), VGG ([21]) and ResNet ([22]).
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Figure 2.1: A visual representation of the three approaches. [19]

These pre-trained layers are used to extract low level features that can then be used for further processing

to determine an anomaly score.

The predominant amount of approaches use spatial data to evaluate anomalies. However, competing top

models in the field also incorporate temporal data through various means - the frame order being chief

amongst them. However, researchers have also utilised frame-level optical flow images ([23]) to achieve

excellent metrics.

The current state of the art model [24] utilises two GAN networks working in tandem to determine the

anomaly score of a single frame. The first GAN takes an RGB frame as input and attempts to construct an

optical flow image. The second GAN performs the opposite process: it attempts to construct an RGB image

from an optical flow image. The final anomaly score is calculated using a combination of the reconstruction

errors of both images. This approach makes it possible to make pixel-level detections possible.

A closely competing model, which preceded the previous method, uses optical flow as well [15]. However, this

model maps the RGB image to a binary map using their novel Binary Quantisation layer to track temporal

changes. The intuition behind the idea is that each set of frames should have similar binary maps unless a

significant amount of motion is present. This method also achieves good pixel level detection accuracy. Such

pixel-level accuracy is not necessary for our use case, and as such, we have decided to focus on achieving

good performance at frame level detection.

We have also tested a small portion of open-source models that are readily available online ([10] [25]). While

we were able to replicate the results achieved in their respective papers, we found that these models could

not be used in high dimensional complex datasets such as ours.

The approach described here falls squarely in the second category in the classification used previously. A

crucial way in which we differentiate our approach is by putting an emphasis on model performance on

hardware, something that is scarcely mentioned in other work. We aim to produce a model architecture that

12



is both performant and accurate, with a focus on performance, as this model can be deployed in locations

with a multitude of cameras, where it will be crucial to deliver fast results, or in local shops, where it is

difficult to access a large amount of computing power.

2.2 Machine Learning

Machine learning is a field of study that gives computers the ability to learn from data without explicitly

being programmed to do so. A slightly more technical definition is

A computer program is said to learn from experience E with respect to some task T and some

performance measure P, if its performance on T, as measured by P, improves with experience

E.

Tom Mitchell, 1997 [26]

Common examples of machine learning include spam filters, chat-bots, computer adversaries for games such

as chess, weather forecasting, voice assistants, etc. Machine learning systems can broadly be classified into

the following non-exclusive categories:

• Whether they are trained with human supervision

1. Supervised learning: the training data contains the desired outcome for each data point along

with it, known as labels.

2. Unsupervised learning: the training data does not contain any labels

3. Semi-supervised learning: only a tiny portion of the training data is labelled

• Whether they can learn incrementally

1. Batch learning: the system is not capable of learning in increments and must be trained on the

entire training dataset at once

2. Online learning: the system is training by feeding it data either in small groups called mini-batches

or individually.

• How the system learns and performs predictions

1. Instance-based learning: the system works by comparing new data points to old known data

points

2. Model-based learning: the system constructs a model by detecting patterns in the data and

building a predictive model

2.2.1 Parameters and Hyperparameters

A machine learning model is defined by the parameters it has learned during training. With neural networks,

this generally refers to the weights and biases of each individual neuron. Model training involves iterating

on the values of these parameters until a satisfactory score in the relevant metric(s) is reached. During the
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training process, we can affect the parameters it has learned. This tuning is done using hyperparameters.

Hyperparameters are not necessarily part of the resultant model. Most hyperparameters are used only during

the training process and can not be inferred from the final trained model. Examples of hyperparameters

include but are not limited to train-test-validation split ratio, choice of optimisation algorithm, choice of the

loss function, number of layers, batch size, learning rate, etc.

2.2.1.1 Randomised Search

The choice of hyperparameters can drastically impact the final performance of the model. The process

of choosing the hyperparameters is called hyperparameter tuning and is vital to get it right. It can be

performed systematically using a method known as randomised search. A traditional method of searching

for the best set of hyperparameters would be to present a list of possible values for each hyperparameter,

try every possible combination, and return the set that performed the best. This method is known as grid

search and can be automated. The major drawback of this approach is that it suffers heavily from the curse

of dimensionality.

Curse of Dimensionality: In higher dimensions, as is the case with images, where the value

of each pixel is treated as a separate dimension, each data point is, on average, further to other

points. It becomes much harder to make predictions in these higher dimensions, as they will be

based on larger extrapolations. This makes increases the risk of over-fitting the data.

Even optimising three or four hyperparameters can take a very long time to evaluate. In contrast to this,

as the name suggests, random search is a technique where each hyperparameter is selected randomly. To

avoid extreme values, each hyperparameter is given a distribution from which it can be sampled. Research

has shown both empirically and theoretically that randomised search performs better than grid search [27].

2.3 Data

In order to make a successful model, one must provide it with ample, good quality training data. The model

must then be tested against equally high-quality testing and validation data.

2.3.1 High-Quality Data

A traditional acronym in the field of computing is GIGO - garbage in, garbage out. This expression is

particularly true for the data-intensive field of machine learning. As the goal of any ML algorithm is to

learn from the data provided to it, said data must be of the highest quality possible. Even minor errors

can lead to quantifiable errors in the final output, especially when the data set is small. In particular, with

labelled data, it is essential to verify that the labels provided are correct. These elements make performing

an intermediate data pre-processing step essential before feeding it into any machine learning algorithm.
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2.3.2 Training Dataset

This dataset is the sample of data that is used to fit the model. It is the data that the model learns from.

2.3.3 Validation Dataset

This sample is used to evaluate the model’s performance frequently. It is used to tune the model’s higher-

level parameters: the hyper-parameters. The model itself does not directly learn from this data. However,

the tuning of hyper-parameters does get affected by the bias towards achieving better performance on the

validation set.

2.3.4 Test Dataset

Once the model has been thoroughly trained using both training and validation datasets, it is finally tested

against the test dataset. This dataset provides insight into how the model will perform on real-world data,

as it has never encountered the test dataset before. It is the gold standard for providing accurate evaluation

metrics on model performance.

2.4 Neural Networks

A subset of machine learning, called deep learning, is based loosely on the biological models of animal brains.

This domain uses artificial neural networks to make an algorithm that models various kinds of behaviour.

2.4.1 Neurons

A neuron (or a unit) forms the most basic block of a neural network. It can take in any number of inputs to

perform a weighted average sum, which then outputs a single number. There may also be a bias term that

is present for each neuron. This number is then passed through an activation function. This function is

necessary as it introduces non-linearity in the system. If this function were not present, upon chaining the

outputs of multiple neurons, which perform a linear transform on their inputs, we would only end up with

another linear transform. It would mean that a network with multiple layers would be reduced to a single

layer, which does not help solve complex problems. The activation function also allows gradient descent to

be used to optimise the model.

The output 𝑧 for a single neuron looks as follows:

𝑧 = ∑ 𝑥𝑖𝑤𝑖 + 𝑏

There are a few candidates for activation functions that can be used. Here, we list the ones that we have

utilised:
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Figure 2.2: A visual representation of a neuron in a neural network.

2.4.1.1 Sigmoid

𝜎(𝑧) = 1
1 + 𝑒−𝑧

2.4.1.2 Hyperbolic Tangent

𝑡𝑎𝑛ℎ(𝑧) = 2𝜎(2𝑧) − 1

2.4.1.3 Rectified Linear Unit (ReLU)

𝑅𝑒𝐿𝑈(𝑧) = max(0, 𝑧)

2.4.1.4 Leaky ReLU

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑧) = { 𝛼𝑧 for 𝑧 < 0
𝑧 for 𝑧 ≥ 0

2.4.2 Gradient Descent

The model will understandably not perform very well on an initial pass of data through the model. An

algorithm is needed to optimise the model’s parameters to fit the data better. Gradient descent fills this

role. It is a method that can find the optimal solutions or get as close as possible to the optimal solution

to many problems. The model’s fit to the data can be expressed through a cost function that needs to be

minimised. Finding the best fit is equivalent to finding the global minima of the cost function. Gradient

descent achieves this by tweaking parameters iteratively until it reaches this minima or gets as close to it as

possible. The first step is to randomly initialise a vector 𝑉 with components 𝑣𝑖 on the loss function 𝐿(𝑉 ).
This vector is the collection of the model parameters that need to be optimised. After this, we calculate the
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Figure 2.3: A graph of the various activation functions used

local gradient of the given point on the loss function.

∇𝑉 𝐿(𝑉 ) =
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⎝
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⋮
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𝛿𝑣𝑛

𝐿(𝑉 )
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⎠

Then, we can iteratively change the vector in the direction opposite the gradient.

𝑉𝑛𝑒𝑥𝑡 = 𝑉 − 𝜂∇𝑉 𝐿(𝑉 )

Here, 𝜂 is the learning rate, which determines the magnitude of the change in the vector. 𝜂 is an important

hyper-parameter of any model. Too low, and the model will take too long to converge, while setting it too

high will make it so that the model can never reach the minima, and the model will continue to bounce

around the region of local minima.

2.4.2.1 Early Stopping

A common practice that we have employed involves monitoring the validation loss of the model on a separate

holdout validation set for each epoch and halting model training when the validation loss reaches a minimum

and performance starts to degrade on further iterations. This simple method is known as early stopping.

This performance loss occurs because there comes a point when the model will stop generalising the data and

begin to learn the noise and other undesired features in the data. In other words, it will begin over-fitting

the training data. We provide some leeway on the validation performance degradation by giving the model

a small number of epochs within which the validation loss must continue to decrease. This is done because
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Figure 2.4: A visual representation that shows the importance of using the correct learning rate

some fortuitousness is involved with mini-batch gradient descent discussed below. This buffer makes sure

that we do not stop the model before it has learned how to generalise at all.

2.4.2.2 Mini Batch Gradient Descent

Computing the gradient with the complete training set for each iteration of the algorithm is computationally

intensive. Instead, we can calculate the gradient using a small sampled subset of the data in mini-batches.

This method, while more stochastic, drastically increases the model’s performance, especially while using

dedicated GPUs.

2.4.3 Backpropagation

In neural networks, we utilise the backpropagation algorithm [28]. It is an implementation of gradient

descent that can efficiently compute the gradients of every model parameter (each neuron’s weights and

biases). For each training batch: - It computes the final prediction of the model while storing the values of

the intermediate steps as well. - It then calculates the prediction error using a loss function that is defined

along with the model. - Using the chain rule, it can determine the contributions of the previous layer to the

resulting error. This step is done recursively, backwards, until the input layer. - Now that it has determined

the gradients for each parameter, it performs a gradient descent step to update the model parameters. This

step can be repeated until desired. Ideally, gradient descent is repeated until the error goes to 0. Practically,

gradient descent is performed for a set number of epochs, which may range from the hundreds to the

thousands, depending on the complexity of the model.
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Figure 2.5: A graphical representation of early stopping. We terminate training at epoch 23.

2.4.4 Kernel Initialisation

Another parameter that requires some amount of consideration is the initialisation of the weights and biases

of the network.

2.4.4.1 Weight Initialisation

One might be inclined to think that using a zero initialisation for the weights might be feasible. However,

in practicality, the derivatives with respect to the loss function end up being the same. So, all neurons are

updated to identical values. The bias term plays no role in the derivative. This essentially makes the model

a linear transform, and it fails to break the initial symmetry. [29]

2.4.4.1.1 Random Initialisation So if zero initialisation fails, then the other approach is to use random

initialisation since we have no idea what the final weights of each neuron will look like. However, this

initialisation can not be completely random. - If the weights are too high, the output of the activation

function such as 𝜎(𝑧) or tanh(𝑧) will be near 1, where there is almost no gradient slope. With the 𝑅𝑒𝐿𝑈(𝑧)
type of functions, it can cause the opposite problem, where the gradients become too large. - Similarly, if the

weights are too low, the gradient vanishes. This can occur for almost all commonly used activation functions.

There are a few initialisation techniques that can help with the above problems:

• Xavier/Glorot Initialisation ([30]): This technique aims to make the variance of the outputs of a layer

equal to the variance of its inputs. While initially developed for the sigmoid activation function, since

it was popular at the time, it still sees use today when the tanh activation function is used.

• He initialisation ([31]) This follows the same idea as Xavier initialisation (making the variances similar)

19



but is more suited for layers with ReLU activation functions.

2.4.4.2 Bias Initialisation

It is common practice to initialise biases to zero since the initial break in the symmetry of the network is

provided by the weights. There are some suggestions to initialise all biases to a small positive number, but

it is unclear if there is any improvement with this method. Hence, we have used zero initialisation for the

biases.

2.4.5 Batch Normalisation

A common problem with ML models is that they can easily over-fit the training data. One of the ways

that this can be alleviated is to use regularisation. We can do this at the output of each neuron with batch

normalisation. This technique involves adding an extra computation step just before the activation function

in each neuron. We can calculate the mean and standard deviation of the batch: 𝜇, 𝜎. This step first

standardises the output of each neuron per mini-batch to a standard Gaussian.

𝑍(𝑖)
𝑛𝑜𝑟𝑚 = 𝑍(𝑖) − 𝜇√

𝜎2 − 𝜖
𝜖 is a small smoothing term that prevents division by 0 errors. In the second step, the distribution is

adjusted through two learnable hyper-parameters 𝛾, 𝛽, which apply a linear transform to the normalised

distribution. This means that these two parameters can be optimised using the gradient descent discussed

above throughout the training process.

𝑍(𝑖) = 𝛾𝑍(𝑖)
𝑛𝑜𝑟𝑚 + 𝛽

This process reduces the inter-dependency between the neurons, making it easier to pinpoint errors with

gradient descent. It also has the added benefits of making model training converge faster and more stable.

2.5 Evaluation Metrics

As the goal of the current work is to classify events simply as anomalous or not, it can be treated as a binary

classification problem. This allows us to have all the metrics associated with such a classification at our

disposal. We have decided to focus our attention on a select few of them.

2.5.1 Confusion Matrix

The confusion matrix is a way to present the true positives (TP), true negatives (TN), false positives (FP)

and false negatives (FN) classified by a model. These numbers are calculated once the model’s outputs,

whose outputs may not be binary, have been passed through a threshold value to determine which class the

predictions belong to. Figure 2.6 provides us with a sample confusion matrix.
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Figure 2.6: An example confusion matrix.

It gives us a clear picture of how the model is performing and possibilities for where the model can be

improved. From this matrix, a plethora of other metrics can be calculated.

2.5.2 Precision

It is a measure of the fraction of the predicted positives that are genuinely positive.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝
𝑡𝑝 + 𝑓𝑝

The higher, the better.

2.5.3 True Positive Rate (TPR)

Also known as sensitivity or recall, it measures how many genuinely positive data points the model has

actually classified as positive.

𝑇 𝑃𝑅 or 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝
𝑡𝑝 + 𝑓𝑛

The higher, the better.

2.5.4 False Positive Rate (FPR)

The FPR measures how many negative points the model has erroneously labelled as positive.

𝐹𝑃𝑅 = 𝑓𝑝
𝑓𝑝 + 𝑡𝑛

The lower, the better.

2.5.5 F-score

This metric simply combines both precision and recall into a single metric. The general F-score is given by

𝛽 = (1 + 𝛽2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
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The choice of 𝛽 determines the weight given to each metric. A higher 𝛽 means that recall is a more valuable

metric. We use the 𝐹1-score, which means we equally value precision and recall. In this case, the 𝐹1-score

is given by

𝐹1 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

The higher, the better.

2.5.6 AUROC

The ROC (Receiver Operating Characteristic) is a curve that visualises the trade-off between the true positive

rate (TPR) and the false positive rate (FPR) as the threshold is varied. The area under this curve (AUROC)

gives us a measure of the model to differentiate between the two classes. The higher the AUROC, the better

the model can distinguish between two classes. A perfect model would have an AUROC of 1. A completely

random classifier that predicts the correct class half the time has an AUROC of 0.5. Most models lie between

this range of AUROCs.

Figure 2.7: A typical ROC plot. This plot has an AUROC of 0.85

AUROC curves are not smooth and are plotted for discrete values of thresholds. For every possible threshold

value, we calculate both TPR and FPR, which we then plot on a single chart. These decision thresholds are
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implicit and not shown on an axis. Similarly, the actual area is never highlighted, and the actual shape of

the curve is given precedence.

2.5.6.1 Limitations

We are aware that AUROC has its limitations. It can be an “overly optimistic” metric on the model’s

performance on datasets with very few negative samples, as is the case with anomalous data. To combat

this, we have made sure to use testing sets with a large number of negative data points.

2.5.7 Youden’s J Statistic

To select the best threshold that provides a balance of sensitivity and specificity, we utilise Youden’s J

statistic, which is calculated as follows:

𝐽 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1

The values for this statistic range from 0 to 1. It gives equal weight to both types of misclassifications, i.e.,

false positives and false negatives. Youden’s 𝐽 can be visualised easily on the ROC curve. Every point on

the curve has an associated 𝐽 , which can be interpreted as the height of the point above the random classifier

line 𝑦 = 𝑥. To pick the best threshold, then, is to pick the point with the highest 𝐽 , which is the point

farthest from the random classifier line.

2.5.8 AUPRC

The AUPRC is the area under the precision-recall curve. The PR curve shows off the trade-off between

precision and recall as a function of the threshold. It is more beneficial for imbalanced datasets. We have

tried to reduce this imbalance in the test datasets that we have, but they are still not balanced. Hence, it

is a valuable metric in this context as well. It is useful when one prioritises finding all the positive samples

(in this case, the positive samples are the anomalies, while the negative samples are the normal frames) in a

dataset. ([32] [33]) While the baseline for the AUROC curve is 0.5, which is given by a completely random

classifier, the baseline for the AUPRC is given by the fraction of positive samples in the dataset. So, a good

value for the AUPRC is dataset dependent. Thus, it is inappropriate to compare the absolute values of

AUROC and AUPRC, even though a higher value is generally better for both.

2.5.9 Reconstruction Error

The approach we employ with this method is to analyse how well the candidate model can reconstruct the

input images. We can think of these two images, one original and the other reconstructed by the model,

as input signals to a measure that can describe how similar these two images are. For more than 50 years,

Mean Squared Error (MSE) has been the prevalent method to compare two signals. [34]
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Figure 2.8: The red line represents the value of Youden’s J statistic.
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Figure 2.9: An example of an AUPRC curve
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2.5.9.1 Mean Squared Error (MSE)

MSE is a signal fidelity measure that compares two signals by providing a score that describes how similar

they are. In most cases, one of the signals is assumed to be the original, best possible signal, without any

errors, while the other is a distorted version whose quality is being evaluated. Under this assumption, MSE

can be used to measure signal quality. This applies to our case as well. If the two signals are x, y with finite

discrete components 𝑥𝑖, 𝑦𝑖, with 𝑖 = (1, 𝑁) where 𝑁 is the total number of components (for images, these

components are pixels), then the MSE between the two signals is given by:

𝐸(𝑥, 𝑦) = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2

We can see a few important points from this definition:

• MSE(x,y) seemingly has no strict upper bound, and the maximum value depends on how the signal is

measured.

• MSE(x,y)=0 if and only if x=y

• MSE(x,y)=MSE(y,x)

2.5.9.1.1 Is MSE suitable? There is evidence that MSE is not suitable for image processing tasks. As

seen in Figure 2.10, MSE can be significantly large for images that, visually, look very similar.

There are some implicit assumptions one makes when choosing MSE as an evaluation metric:

• Signal fidelity is independent of spatial or temporal relationships between the pixels

• All pixels contribute equally to signal fidelity

• Signal fidelity is independent of the sign of the error between pixels These assumptions are very powerful

and impose certain limitations on where MSE can be used accurately. In the realm of visual perception

of images, these assumptions do not hold. As seen in Figure 2.11, images that look eclectically different

to the human eye can have the same MSE value.

There is another alternative that we can use, called the Structural Similarity Index (SSIM).

2.5.9.2 Structural Similarity Index (SSIM)

The main philosophy that underlies the SSIM method is based on human perception and the human visual

system. It seeks to measure the structural information present in images, as humans have also been con-

ditioned to do. SSIM measures the similarity of the three aspects: luminance 𝑙(𝑥, 𝑦), contrast 𝑐(𝑥, 𝑦), and

similarity 𝑠(𝑥, 𝑦). It does so in patches across the entire image. The final SSIM is obtained by computing

the average SSIM of all the patches in the image. As before, we have x, y with components 𝑥𝑖, 𝑦𝑖. Let 𝜇𝑗, 𝜎𝑗

be the mean and variance of the 𝑗𝑡ℎ signal and 𝜎𝑥𝑦 be the covariance of x, y. We can think of the mean

as an estimate of the luminance, the variance as an estimate of contrast, and the covariance measures the
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Figure 2.10: Demonstration of lack of usefulness of MSE for images [34]

Figure 2.11: An equal MSE hyper-sphere for an image
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tendency of the signals to vary together, which can be used to estimate structural similarity. These aspects

are given by:

𝑙(𝑥, 𝑦) = 2𝜇𝑥𝜇𝑦 + 𝐶1
𝜇2𝑥 + 𝜇2𝑦 + 𝐶1

𝑐(𝑥, 𝑦) = 2𝜎𝑥𝜎𝑦 + 𝐶2
𝜎2𝑥 + 𝜎2𝑦 + 𝐶2

𝑠(𝑥, 𝑦) = 𝜎𝑥𝑦 + 𝐶3
𝜎𝑥𝜎𝑦 + 𝐶3

where

𝐶1 = (𝐾1𝐿)2; 𝐶2 = (𝐾2𝐿)2; 𝐶3 = 𝐶2
2

Here, 𝐿 is the dynamic range of the pixel values and 𝐾1, 𝐾2 are scalar constants. We have used 𝐾1 = 0.01
and 𝐾2 = 0.03. Finally, the SSIM index between two signals is given by

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼[𝑐(𝑥, 𝑦)]𝛽[𝑠(𝑥, 𝑦)]𝛾

𝛼, 𝛽, 𝛾 are used to set the relative importance of each component. If we set 𝛼 = 𝛽 = 𝛾 = 1, the SSIM is

given by [35]

𝑆𝑆𝐼𝑀(𝑥, 𝑦) = (2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)
(𝜇2𝑥 + 𝜇2𝑦 + 𝐶1)(𝜎2𝑥 + 𝜎2𝑦 + 𝐶2)

From this, we can see:

• SSIM is bounded.

• −1 ≤ 𝑆𝑆𝐼𝑀(𝑥, 𝑦) ≤ 1 - 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 1 if and only if 𝑥 = 𝑦 - 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = 𝑆𝑆𝐼𝑀(𝑦, 𝑥)

The effectiveness of using SSIM over MSE can be seen in the previous two Figures 2.11 and 2.10. One can

easily discern that images with higher SSIM do indeed look more similar to the original image.

2.5.10 Frame Buffer

Any real-world data set is not perfect. There is an abundant amount of noise present in the data. This

noise can also manifest itself in the reconstruction error of each frame. It can cause a short sequence of

frames that would otherwise be considered normal to be flagged as anomalous. Likewise, the inverse is also

true. There can be short spikes of activity that may be flagged as normal during an anomalous event. To

prevent these accidental false spikes, we have implemented a frame buffer system that requires the length of

the event (whether anomalous or normal) to exceed a certain number of frames before it can be classified.

This value is yet another hyperparameter that we can tune.
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Chapter 3

Current Model/Approach

3.1 Overarching Framework

Anomalies, especially for video data, can be hard to define concretely. In the real world, the definition of an

anomaly can vary considerably depending on the situation and context. For example, for a camera monitoring

a store, video footage of burglary, arson and violence have entirely different characteristics. Nevertheless,

they are all classified as anomalous behaviour (for a reasonable shopkeeper). However, these need not be the

only kinds of anomalies. There could be other events that do not fall under any such classification. This is

why, traditionally, security personnel must monitor CCTV feeds to ensure maximum security. It is possible

to define anomalies in a way that makes it easier for us to analyse them.

Anomalies Also known as outliers or novelties, anomalies are defined as data points that deviate

significantly from the normal data.

This definition allows us to focus on the task of identifying anomalies rather than concern ourselves with the

exact nature of each anomaly. A data point can be labelled as anomalous if it deviates significantly from

the well-established normal pattern for the given data with a chosen metric. It is the model’s role to learn

what the normal distribution looks like and decide what the threshold for deviating significantly for a point

to be classified as an anomaly. This work aims to find an unsupervised machine learning framework that

can reliably detect such anomalies in CCTV surveillance footage from empirical data.

Why unsupervised learning? Anomalies are typically a rare phenomenon. In most real-world

data, the normal instances make up an overwhelmingly large proportion of the data. As a result,

it is not easy to find and make labelled data sets that could be used in a supervised setting.

We aim to achieve this using a weakly labelled dataset. That is, the training data that is fed into the model

does not contain any anomalous frames. We, of course, have a fully frame-level labelled dataset available to
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us so that we can perform an accurate evaluation of the model. However, we do not provide any of these

labels to the model. They are only used in the evaluation phase of model testing. Importantly, our aim is

not to construct a single all-encompassing model that will work on all eight datasets. Instead, our goal is

to construct a reliable model architecture that can be trained on individual datasets - which correspond to

individual cameras on-premise - and can perform reliably. We aim to create a performant model so that it

can be trained and deployed on a large fleet of cameras at once.

The model learns what an ordinary scene looks like for each dataset and the pattern of images it comprises

of. As a result, when normal frames are passed to the model for testing, their reconstruction error should

be low. When anomalous frames are introduced, their reconstruction error should be relatively higher than

that of the normal images since the model has not encountered such images during training. By deciding on

an appropriate threshold for the reconstruction error, we can construct a binary classifier than can classify

the frame as normal or anomalous.

Autoencoders and GANs are similar in some aspects: both learn dense representations, are unsupervised,

and can be used to generate new samples. They also have similar applications. We decided to test out

both approaches and see how they would both compare on performance and evaluation metrics with these

similarities in mind.

3.2 Datasets

In this work, we have used eight different datasets. Each dataset describes a different scenario that such

a model can be expected to be deployed in. They contain clearly defined normal and anomalous events

that can be used for this analysis. These datasets are described in Table 3.1 We also provide the number

of frames avaiable in each dataset in the last column. These datasets have been extracted from real world

CCTV footage from various events at different locations and times of the day. This large variety in scenarios

ensures that any model that is trained using these datasets will be quite robust. We provide a sample of the

images from the datasets, with normal and anomalous frames, in Figure 3.1.

For video CCTV data such as ours, we have verified that the video contains no unnecessary frames such

as loading screens, black screens, or other unhelpful frames. We have also taken steps to ensure that the

labels provided to the test set are not heavily biased by the people who have labelled them. All datasets are

available in the RGB colour space. The frame sizes of each dataset vary but have been standardised to fit

the model during the pre-processing stage. In particular, with CCTV footage, many camera feeds record at

low frame rates and resolutions.
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Table 3.1: A detailed description of the eight datasets used.

Dataset Description Anomalous Event(s)

Dataset

Size

abbey A crossroad with both people and

cars

Road accidents 10,726

beach An empty beach at night People walking around; torches being lit 8,404

castro Another busy street surrounded by

buildings

Traffic jams or road accidents 4,054

meteor-

night

A still sky with no motion Appearance of meteors 4,604

motorway A busy highway Traffic jams 6,679

tractor Tractors passing on a dirt road Tractors catching fire or other accidents 13,504

volcano The peak of a volcano The volcano erupting 5,132

Due to the nature of anomalous events - the fact that a majority of them are rare and occur for a small

period of time - the labelling and gathering of these datasets is relatively simple and not time-consuming.

In fact, since the training data is weakly labelled as normal, it is straightforward to gather training data

from any surveillance camera. The ability to easily create training data makes deploying such a model in

real-world scenarios uncomplicated.

3.2.1 Image Pre-processing

These raw images can not be fed directly into the model. They must first undergo preliminary processing

to ensure the data is of sufficiently high quality and standardised. We have taken the following steps in

pre-processing the images from these eight data sets:

• Standard image shape: All images have been re-scaled to have a fixed size of 144 × 144 pixels. This

involves either scaling up or scaling down the raw images. We have used the techniques described in

Section 3.4.2 for up-sampling. These techniques can also be applied to downscale an image, which we

have done.

• Colour channels: Images have been converted to greyscale, which decreases the number of colour

channels from three for RGB to just one. This step significantly increases performance as we have cut

the number of parameters the model needs to learn by one third. We also know that the exact colours

of objects do not matter in such anomaly classification. For example, one does not need to know the

colour of the cars to detect a traffic jam in the motorway data set.

• Normalisation: This step ensures that each input parameter (each individual pixel in this case) has
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Figure 3.1: A comparison between normal frames and anomalous frames three datasets: abbey, motorway

and otter respectively. The normal frames are on the left with the corresponding anomalous frames on the

right.
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a similar data distribution. This makes it so that a few numerically large parameters do not take

precedence over other parameters. The pixels of each image are normalised to the [−1, 1] range.

The input image that is fed to the model is finally a 144px×144px greyscale image, where the values of each

pixel range from [-1,1]. A comparison between a raw image and its corresponding input image can be found

in Figure 3.2.

Figure 3.2: A comparison between a raw (left) and pre-processed (right) image. The pre-processed is

displayed using the standard viridis colour map.

3.3 Autoencoders

Autoencoders are an unsupervised learning class of models that are capable of learning dense representations

of the input data. These representations have much lower dimensions than the input data, which makes

autoencoders great for dimensionality reduction. An autoencoder is trained to output its input. While this

may seem like a trivial task, it is complicated by adding additional layers in-between the input and output

that prevent the model from learning the identity mappings. This constraint forces the autoencoder to learn

efficient representations of the input data in these deeper layers. In other words, it forces the autoencoder

to focus on the essential features of the image. It consists of two parts: the encoder, which tries to map the

inputs to the latent representation, and the decoder, which tries to map the latent representations back to

their original form. In this way, an autoencoder is symmetrical. Since there are no labels provided, the “label”

for each pixel is the pixel itself. The difference between the two images is calculated using a reconstruction

error. There are a few possible choices for the reconstruction error, as is discussed in Section 2.5.9. Once the

complete architecture has been trained, it is possible to use the output of the encoder to obtain a compressed

representation of the input, which can be further used for other tasks. Since it is a neural network, it is

capable of learning nonlinear relationships within the data. This makes it a more powerful version of PCA
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([36]). While PCA aims to learn an optimal hyper-plane that describes the data, autoencoders are able to

learn an optimal manifold, which models the data much better.

3.3.1 Under-complete Autoencoders

The way we constrain the model in this approach is to limit the size of the hidden layers, which limits the

amount of information that can flow through the network [37].

Figure 3.3: Visual representation of the architecture of an under-complete autoencoder

The important hyperparameters for this kind of model are the number of layers and the size of the bottleneck

layer. Adding too many layers to the encoder and decoder is not helpful, even if the bottleneck layer is small,

as this does not prevent the model from overfitting the data.

3.3.2 Variational Autoencoders

There are two major types of generative models: variational autoencoders (VAEs) and generative adversarial

GANs. VAEs are autoencoders whose encodings in the latent space have been regularised during the training

process that allows one to randomly sample from this latent space and generate new data points. This

regularisation step is necessary as there is no guarantee that it will take place automatically since a normal

autoencoder is trained with a singular goal in mind: to minimise the reconstruction error. So during training,

the model will strive to achieve this, regardless of the structure of the latent space. The regularisation is

implemented as follows:

• The input is encoded as a Gaussian distribution over the latent space with a different mean and variance

for each input

• A point is sampled from this distribution, which is then passed through the decoder
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• The reconstruction error is computed and back-propagated through the network

The loss function used here is the sum of two parts: the reconstruction error that compares the two images,

and the latent loss, which compares the encoded distribution to a standard Gaussian distribution. The latent

loss ℒ, which is the Kulback-Leibler divergence, is given by [38]

ℒ = −1
2

𝑛
∑
𝑖=1

[1 + log(𝜎2
𝑖 ) − 𝜎2

𝑖 − 𝜇2
𝑖 ]

where 𝑛 is the number of dimensions and 𝜎𝑖, 𝜇𝑖 are the 𝑖𝑡ℎ component of the variance and mean. VAEs also

make it possible to interpolate between images at an encoding level instead of at a pixel level.

3.4 Convolutions

In machine learning, a convolution is a process of taking a matrix (of size smaller than the input image) called

the kernel and passing it over an input image to transform the image based on the kernel. In mathematical

form, it looks as follows:

𝐺[𝑚, 𝑛] = (𝑓 ∗ ℎ)[𝑚, 𝑛] = ∑
𝑗

∑
𝑘

ℎ[𝑗, 𝑘]𝑓[𝑚 − 𝑗, 𝑛 − 𝑘]

where 𝑓, ℎ are the image and kernel respectively and 𝑚, 𝑛 is the size of the image in pixels.

Figure 3.4: A visual representation of a convolution [39]

This function works for a single 2D matrix and outputs another 2D matrix. Each 2D matrix here represents

a channel. With images, it is common for them to be single-channel (grey) or multi-channel (RGB). It is

possible to perform a convolution with an arbitrary number of channels from layer to layer. Each such

mapping has a different kernel associated with it. The above formula shows that the output size will be

smaller than the input. To mitigate this problem, one may choose to add padding to the image, which is a

border around the image, usually consisting of empty pixels (with a value of 0). The above formula is valid

for a convolution operation with a stride of 1. This means that we move the kernel over the image one pixel

at a time. However, it is also possible to shift it by multiple pixels. The number of pixels shifted per step is

known as stride. If the padding is given by 𝑝, the stride is given by 𝑠, and the size of the kernel is given by

𝑓 , then the dimensions of the output image can be calculated as (assuming both the input image and the
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kernel are square)

𝑛𝑜𝑢𝑡 = [𝑛𝑖𝑛 + 2𝑝 − 𝑓
𝑠 + 1]

A convolution operation performed on an image as part of a machine learning model is referred to as a

convolutional layer. Consequently, convolutions and convolutional layers in model architectures are better

suited to handling and processing image data than traditional dense, fully connected layers. This can be

attributed to a few points below. We assume a similar dense layer would have the same number of neurons.

- A convolutional layer uses fewer parameters by forcing the input values to share parameters. There will

be 𝑚 ∗ 𝑛 connections with a dense layer where 𝑚, 𝑛 are the input and output sizes. The weights are much

smaller with a convolutional layer as each output is mapped to (usually) a small number of input pixels,

depending on the kernel size. The output is formed only by the spatially nearest neighbours in the input.

- The relationship between the output and neighbouring input pixels is already taken into account with

convolutional layers. Here, we assume that the neighbouring pixels in the input are related, and the pixels at

the opposite ends of the image do not significantly influence each other. This assumption holds true in many

visual analysis tasks. When this assumption can not reasonably be held to be true, it would make sense to

use dense layers over convolutional ones. Due to the above reasons, we have decided to use convolutional

layers in our models.

3.4.1 Pooling Layers

In order to maintain a performant model, it is computationally less expensive to decrease the size of an

image by using a pooling layer, as opposed to using a strided convolution. It has empirically been found that

using this strategy with a minimal loss in accuracy in several benchmarks. In this scenario, we decided that

the performance uplift is worth the minor loss in evaluation metrics that may occur. [40]. A pooling layer,

much like a convolution layer, uses a kernel with a size smaller than the input to perform a fixed operation

on the image. There are no parameters to learn in this case. No padding is applied, so the resultant image

is always smaller than the input. Two common types of pooling operations are:

• Average pooling: Returns the average of all the values in each patch of the image

• Max pooling: Instead of calculating the average, it simply returns the maximum value in the patch

With either method, pooling helps make the representation translation invariant to local changes. This

means that if we shift the input to a layer by a small amount, most of the output values will not change.

This makes the model more robust.

3.4.2 Upsampling Layers

In a similar fashion to pooling layers that perform downscaling of the input, there are upsampling layers whose

output dimensions are larger than the input dimensions. Upsampling can not reconstruct any information
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that is lost during the downsampling process. In most cases, there are no parameters to be learned. However,

more complicated techniques do exist ([41] [42]). The methods we tried are:

• Nearest neighbour: the unknown pixels are assigned the same value as the nearest pixel

• Bi-linear: the value of the pixel is interpolated using the nearest rows and columns of pixels. A visuali-

sation of this algorithm is provided in Figure 3.5. The bi-linear interpolation is achieved by performing

three linear interpolations. We first interpolate between 𝑓(𝑥𝑖, 𝑦𝑗), 𝑓(𝑥𝑖+1, 𝑦𝑗) and 𝑓(𝑥𝑖, 𝑦𝑗), 𝑓(𝑥𝑖, 𝑦𝑗+1) to

get 𝑓(𝑎, 𝑦𝑗) and 𝑓(𝑥𝑖, 𝑏) respectively. The order of this initial pairing is irrelevant. We then interpolate

between these two points to finally arrive at 𝑓(𝑎, 𝑏).

Figure 3.5: A pictorial representation of bi-linear interpolation for four points.

3.5 GANs

The idea behind GANs is simple in thought but tediously challenging to implement. We make two neural

networks compete against each other and, like other industries and sectors in the real world, hope that the

competition between them makes both of them excel at their respective roles. The two competing models

are:

• Generator: It takes a random distribution (mostly a Gaussian) and outputs some target data, which

is typically an image.
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• Discriminator: It takes the output of the generator and compares it to a real data point from the

training data. It outputs a value that tells us if the image is real or not.

Both networks have opposing goals: the generator tries to produce realistic images that can fool the dis-

criminator, while the sole goal of the discriminator is to learn to differentiate between real images and the

“fake” images provided to it by the generator. The GAN architecture formally is based on a zero-sum non-

cooperative game. The game ends when it reaches a Nash Equilibrium. At this point, no player benefits

from changing their current strategy. It has been shown that the only Nash equilibrium that GANs can

reach is the one where the generator wins, and the discriminator is forced to take a random guess (50% each)

if the image is real or fake. [43] Formally, the GAN objective function, which is a minimax function, can be

written as

min
𝜃

max
𝜙

𝑉 (𝐺𝜃, 𝐷𝜙) = 𝔼x∼p𝑑𝑎𝑡𝑎
[log 𝐷𝜙(x)] + 𝔼z∼𝑝(z)[log(1 − 𝐷𝜙(𝐺𝜃(z)))]

Due to this, we cannot train the GAN in the normal way. Training takes place in two steps, first by training

the discriminator and back-propagating its weights, and then by training the generator and back-propagating

its weights.

3.5.1 Difficulties in Training GANs

In practice, many complications arise while trying to train GANs:

• Oscillations of parameters: the model parameters never converge Since both the generator and dis-

criminator compete against each other, their parameters may continue to oscillate and never stabilise.

Many factors can contribute to this behaviour, making GANs very sensitive to initial parameters.

• Mode collapse: the generator’s outputs become less diverse This can happen if the generator gets good

at producing a particular kind of image that can fool the discriminator. Since we reward this, it will

continue to produce only those particular images and will not produce other kinds of images. Mode

collapse is rarely to a single point, but partial collapses are common.

• Unbalanced generator and discriminator: Both networks can be unbalanced in the amount of infor-

mation each can process. As an extreme example, consider a dense, fully connected network as the

discriminator and a convolutional network as the generator. The discriminator is not powerful enough

to provide good feedback data for the generator, and as a result, the generator will not learn to generate

realistic images. However, currently, there is no metric to compare the power of two networks.

These obstacles make training GANs difficult, but the increase in performance is well worth the extra

investment. We have tried a GAN based approach with the expectation of getting a much more performant

model.
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3.5.2 BiGANs

While GANs are able to learn the mappings from a simple distribution to a complex dataset and use this

mapping to generate new samples of data, normal GANs have not been able to learn the inverse mapping

from dataset to simple distribution. This means that to generate a data point from a GAN, one must

provide the input in the form of a point on the simple distribution. This approach does not fit in with

the overarching framework and approach of the current work. To circumvent this, we utilise Bidirectional

Generative Adversarial Networks (BiGANs) as a way to learn the inverse mapping and, more importantly,

the ability to retrieve a reconstruction error from a GAN based model [44].

Figure 3.6: The model architecture for a BiGAN model [44]

The model contains an additional encoder 𝐸, which learns the inverse mapping. The BiGAN discriminator

discriminates both in the data space and the latent vector space instead of doing it only in the data space.

In this case, the objective function is given by:

min
𝜃

max
𝜙

𝑉 (𝐺𝜃, 𝐷𝜙) = 𝐸𝑥∼𝑝𝑋
[log 𝐷𝜙(𝑥)] + 𝐸𝑥∼𝑝𝐺

[log(1 − 𝐷𝜙(𝑥))]

In order to successfully fool the discriminator, the encoder must successfully invert the generator output

such that 𝐸(𝐺(𝑧)) = 𝑧. Using a fully trained version of this model, it is possible to provide an input image

to the encoder, which is then passed to the generator to provide a new image that will be as close as possible

to the input image. The two images can then be used to compute the reconstruction error.
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Chapter 4

Results and Discussion

4.1 Results

4.1.1 sUAE Model

First, we provide the results of a previous autoencoder model that a different team at the company has previ-

ously worked on. This previous pipeline (henceforth referred to as the sUAE pipeline) has an undercomplete

autoencoder architecture. It takes as input a 224 × 224 × 3 image in the RGB colour space. The latent space

comprises of vectors with dimensions 32 × 32 × 128. It uses a relatively simple architecture, shown in Table

4.1. A subset of the results given by the model is provided in Table 4.2.

Table 4.1: Architecture for the prior sUAE model.

Layer Parameters

Conv2D Filters = 32, BatchNorm, ReLU

MaxPooling2D 2x2

Conv2D Filters = 64, BatchNorm, ReLU

MaxPooling2D 2x2

Conv2D Filters = 128, BatchNorm, ReLU

MaxPooling2D 2x2

Conv2DTranspose Filters = 128, BatchNorm, ReLU, Stride = 2

Conv2DTranspose Filters = 64, BatchNorm, ReLU, Stride = 2

Conv2DTranspose Filters = 32, BatchNorm, ReLU, Stride = 2
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Table 4.2: A selection of results that showcase the sUAE model’s performance.

Dataset Precision Recall F1 AUROC AUPRC

Abbey 0.84 0.72 0.79 0.49 0.80

Motorway 0.70 0.89 0.79 0.73 0.74

Tractor 0.78 0.7 0.74 0.83 0.74

There are a few disadvantages with this implementation:

• The pipeline does not automatically select the best threshold for anomaly detection. This threshold

has to be set manually for each dataset and for each iteration of the model. This makes it cumbersome

to train and deploy the model on any dataset. This problem is further exacerbated if one wishes to

do so for all eight datasets included here or wants to extend the analysis to other, new datasets. The

manual entry of the threshold also introduces a new source of error that can significantly impact model

performance, as the threshold selection is very arbitrary.

• A fundamental flaw in this pipeline is that a consequence of changing the threshold results in a change

in the AUROC value as well. This should not happen, as once the model is trained, the reconstruction

errors it provides for each image are independent of the threshold value that is decided much later on

in the process. We can infer from this that there is a flaw in the analysis section of the pipeline.

• There is also much performance that can be gained by using Upsampling layers along with non-strided

Conv2D layers instead of strided convolutions.

• The metrics are not within an acceptable range, as such low metrics have led to the pipeline missing

anomaly events of intermediate length. For a practical model, we require that all anomalous events be

detected, at least for a few frames of images at a bare minimum. Achieving perfect frame-level accuracy

is clearly beneficial, but missing entire anomalous events is not acceptable, as there are multiple data

points available that belong to each anomaly.

We have done the work described herein as an effort to improve the sUAE pipeline mentioned above, making

a new pipeline that is more robust, performant, and scores higher in the relevant evaluation metrics.

4.1.2 BiGAN model

The BiGAN approach is appealing because the research work shown in Section 2.1 leverages various kinds

of GANs for incredible accuracy in test datasets. We have tried a similar approach with the expectation of

a high level of accuracy at the cost of some performance. We present the architecture of this network in

Tables 4.3 and 4.4.
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Table 4.3: Generator architecture for the BiGAN model.

Generator Layers Parameters

Conv2DTranspose Filters = 256, Kernel = 4 BatchNorm, ReLU, Stride = 3

Conv2DTranspose Filters = 128, Kernel = 4 BatchNorm, ReLU, Stride = 3

Conv2DTranspose Filters = 64, Kernel = 4 BatchNorm, ReLU, Stride = 4

Conv2DTranspose Filters = 1, Kernel = 4 BatchNorm, ReLU, Stride = 4

Table 4.4: Encoder architecture for the BiGAN model.

Encoder Layers Parameters

Conv2D Filters = 64, Kernel = 4, BatchNorm, LeakyReLU, Stride = 4

Conv2D Filters = 128, Kernel = 4, BatchNorm, LeakyReLU, Stride = 4

Conv2D Filters = 256, Kernel = 4, BatchNorm, LeakyReLU, Stride = 3

Conv2D Filters = 50, Kernel = 4, LeakyReLU, Stride = 3

The discriminator follows the same architecture as the encoder, except that it is in the reverse order. The

underlying space that we are sampling from has 50 dimensions, as shown by the number of filters in the last

layer of the encoder. This model was trained for a maximum of 800 epochs.

The results for this method are shown in Table 4.5

Table 4.5: Results from the BiGAN model.

Dataset Precision Recall F1 AUROC AUPRC

abbey 0.85 0.3 0.44 0.57 0.48

beach 0.9 0.53 0.67 0.74 0.85

castro 0.72 0.42 0.53 0.64 0.65

meteor night 0.31 0.61 0.41 0.56 0.37

motorway 0.46 0.79 0.58 0.68 0.63

otter 0.89 0.94 0.91 0.99 0.99

tractor 0.56 0.56 0.56 0.6 0.98

volcano 0.93 0.95 0.94 0.89 0.78

Average 0.7 0.64 0.63 0.71 0.72
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4.1.3 VAE Model

The VAE model takes the input as 144 × 144 images and produces the same size output. We have utilised:

• Convolutional layers with batch normalisation and ReLU as the activation function, with max pooling

layers and bi-linear up-sampling layers to change the dimensions of the image in between layers.

• Dense layers for moving between the latent space and data space to comply with the VAE architecture

• He initialisation for all layers

• A sigmoid activation for the final layer to achieve pixel outputs between (0,1)

• A maximum number of epochs of 100. However, by implementing early stopping, this maximum was

rarely reached. The model architecture is given in Table 4.6. The results from this model are given in

Table 4.7.

Table 4.6: Architecture for the VAE model.

Layer Parameters

Conv2D Filters = 16, BatchNorm, ReLU

MaxPooling2D 2x2

Conv2D Filters = 32, BatchNorm, ReLU

MaxPooling2D 2x2

Conv2D Filters = 64, BatchNorm, ReLU

MaxPooling2D 2x2

Conv2D Filters = 128, BatchNorm, ReLU

MaxPooling2D 2x2

Flatten -

Collection of Dense Layers Size = 60, ReLU

Conv2D Filters = 128, BatchNorm, ReLU

UpSampling2D 2x2

Conv2D Filters = 64, BatchNorm, ReLU

UpSampling2D 2x2

Conv2D Filters = 32, BatchNorm, ReLU

UpSampling2D 2x2

Conv2D Filters = 16, BatchNorm, ReLU

UpSampling2D 2x2

Conv2D Filters = 1, BatchNorm, Sigmoid
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Table 4.7: Results from the VAE model.

Dataset Precision Recall F1 AUROC AUPRC

abbey 0.98 0.7 0.82 0.82 0.96

beach 0.75 0.8 0.77 0.85 0.79

castro 0.67 0.56 0.61 0.72 0.78

meteor night 0.78 0.88 0.83 0.79 0.82

motorway 0.8 0.75 0.77 0.8 0.73

otter 0.99 0.97 0.98 0.99 0.99

tractor 0.9 0.88 0.89 0.89 0.95

volcano 0.97 0.98 0.97 0.95 0.94

Average 0.86 0.82 0.83 0.85 0.87

4.1.4 AE Model

Finally, we present the AE model architecture. This model follows precisely the same architecture as that

described in Table 4.6, with the exception of the Flatten and Dense layers, which have been removed. This

means that the latent space representation is no longer regularised, and the model is not guaranteed to be

able to generate new images from a random point in the latent space. The other properties of this model

are also identical, as described in the previous Section 4.1.3. The results from this model are given in Table

4.8.

Table 4.8: Results from the AE model.

Dataset Precision Recall F1 AUROC AUPRC

abbey 0.88 0.88 0.88 0.62 0.87

beach 0.81 0.82 0.81 0.92 0.85

castro 0.79 0.99 0.88 0.92 0.66

meteor night 0.89 1 0.94 0.99 0.97

motorway 0.74 0.92 0.82 0.83 0.84

otter 0.99 0.99 0.99 0.99 0.99

tractor 0.93 0.95 0.94 0.99 0.98

volcano 1 1 1 0.99 1

Average 0.88 0.94 0.91 0.92 0.91
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4.1.5 Performance

We also provide a comparison of the model run times on the various datasets in Figures 4.1, 4.2 and 4.3.

Models were run both on a normal laptop CPU (i7-8750H, released in 2017) and on a Google Colab GPU

(Tesla K80, released in 2014), which can be run on any computer that has access to a browser. Both models

can be run on either processing unit, but a GPU enables us to accelerate model development greatly.

We also provide the AUROC, AUPRC and frame-level graphs for the AE based model, as it is the model

with the best performance. For the sake of brevity, we discuss two datasets. The other graphs corresponding

to this model are available in the Appendix.

4.1.5.1 Violin Plots

We have provided the performance results using violin plots. As violin plots are relatively uncommon, we

have included this section to give a brief overview of these plots.

A violin plot is a hybrid of a traditional box plot and a kernel density plot. A box plot can be misleading,

as various different distributions of data can produce similar, if not the same, box plots. The addition of

the density plot helps visualise the distribution of the data points. A wider density plot indicates a higher

frequency of data points, and vice-versa.

As is standard, the box within each density plot represents the interquartile range (IQR). The dashed line

and the solid line represent the mean and mode respectively. Next to the violin plot, we have also represented

the individual data points. It is important to note that the horizontal spread of the data points is done only

for visualisation purposes and has no other meaning.

Figure 4.1: Graph comparing the run times on the GPU and CPU respectively for the BiGAN model.
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Figure 4.2: Graph comparing the run times on the GPU and CPU respectively for the VAE model.

Figure 4.3: Graph comparing the run times on the GPU and CPU respectively for the AE model.
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Figure 4.4: AUROC curves for motorway and tractor respectively

Figure 4.5: AUPRC curves for motorway and tractor respectively
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Figure 4.6: Frame level predictions for motorway and tractor respectively. The red line represents the

threshold chosen using Youden’s J(Section 2.5.7). The lightly yellow coloured background portion represents

the frames that are anomalous.
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4.2 Discussion

4.3 BiGAN review

Firstly, we would like to discuss the results of the BiGAN model. We tried this model with the expectation

that the trained discriminator would be able to differentiate between the normal images and anomalous

images as the encoder would poorly reconstruct the anomalous images in the distribution space, and the

subsequent reconstruction by the generator would likewise be poor. Hence, the pairs (𝑧, 𝐺(𝑧)), (𝑥, 𝐸(𝑥))
would not not be able to fool the discriminator. However, this is not the case in practice, as evidenced by

the results in Table 4.5. Additionally, we also observed that the results from the model would fluctuate

from epoch to epoch. However, we have verified that mode collapse did not occur, as the model was able to

output many kinds of images from the training data set.

We have tried to eliminate the common difficulties that prevail in GAN training, but more work can be done

in getting results with this method.

• We have added additional augmented training images, using minor translations and rotations to gen-

erate additional images to increase the training data set size multi-fold.

• We also conducted hyperparameter searches to find optimal parameters for the model.

Our hypothesis for why this model did not work can be summarised in the points below:

• The variance of the results across epochs suggests that the model parameters did not converge and

continued to oscillate.

• Both the discriminator and the generator were not well balanced enough with respect to each other

for the Nash Equilibrium to be reached.

• GANs are known to be very sensitive to hyperparameters, and perhaps the hyperparameter search we

conducted was not thorough enough.

• Even after data augmentation, the training data set was not large enough for the GAN to adequately

learn all the features of the data set.

Future work in this direction could attempt to remedy the problems described above. Other GAN archi-

tectures could also be tested, with loss functions other than the function described in Section 3.5. Another

important consideration is the fact that we needed to develop a GAN model that could work on all eight data

sets simultaneously. In many works previously (discussed in Section 2.1), a GAN model has been developed

for each individual data set. It may be that our approach is not compatible with the GAN architecture.

Due to the time constraints of the project, we decided to pursue other architectures instead of diving deeper

into the GAN based architectures, which have a reputation of being difficult to train. This difficulty, coupled

with the fact that we have to find a GAN architecture that needs to work across eight datasets without
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individual tweaking, were crucial factors in our decision.

4.4 VAE Review

The VAE based model performs significantly better than the BiGAN model. We have found that this model

does not miss any anomalous events at all. It is also able to generate new images from the data set it is

trained on. However, the AE model manages to outperform this model. As the only difference between

these two models is the normalisation of the latent space, we hypothesise that finer tuning of this part of

the model may yield comparable, if not better, results than the AE model.

4.5 AE Review

The AE based model is the model that we have seen the best results with. This model performs much better

than all of the previous models. The frame level graphs show how implementing a frame buffer system has

positively impacted the results. The data plotted in Figure 4.6 is the raw anomaly score for each frame. The

frame buffer ensured that the short spikes above and below the red threshold line did not have a negative

impact on the performance metrics of the model.

With an average F-score of 0.91, we can say with certainty that this model performs well across all eight data

sets and will perform very well on new data sets on the field as well. The drop in metrics arises from the fact

that, in most cases, at a frame level, there is an unclear boundary between normal events and anomalous

events. We have achieved what we set out to accomplish with this in context. The evaluation metrics of

the model are at a highly satisfactory level, especially for the model’s intended use cases in surveillance and

security.

4.5.1 Avenues for Improvement

There do remain some areas in which model performance might be improved. These points are valid for

both the AE and VAE models, as they are based on the same underlying architecture.

• The current frame buffer system we have implemented is a flat number cut-off. A better system would

have a more reactive approach that would take more factors such as the frequency of the spikes into

account and would consider the reconstruction error of the frames as well.

• We have only explored the use of undercomplete autoencoders to constrain the network. Another

approach, known as sparse autoencoders, is also possible [45]. This approach constrains the model by

penalising the activation of hidden units. We have not explored the effects of such an approach in this

work.

• As seen in Sections 3.4.1 and 3.4.2, we have used the most common approaches used in pooling and
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upsampling layers. There are more methods of image scaling possible, such as polynomial scaling,

vectorisation, Fourier transforms, Lanczos resampling, etc. [46]

• We have used greyscale images to obtain a meaningful increase in performance. The usefulness of full-

colour images could also be explored. Additionally, there are different ways to convert a colour image

to a greyscale image. It has been shown that the method used for this conversion can significantly

impact the final model performance [47]. These additional methods, such as contrast boosting or other

filters, can also be explored to see if they impact this specific model’s performance in any way.

4.6 Model Performance

The BiGAN model, as expected, takes the most extended amount of time to train. This is because GANs

must be trained for a large number of epochs to achieve satisfactory results. In this case, the results are not

worth the large amount of time any such GAN based models take.

The performance of the autoencoder based models is more appealing than the GAN based model. The AE

model, which we have chosen fit for deployment in the real world, can be trained quickly on most modern

laptops offline. Time taken can be significantly reduced by connecting online to a Colab GPU. The low

time taken also makes it a good fit for iterative development of other pipelines based on this model. The

VAE model does take significantly longer due to the inclusion of additional dense layers, so an increase in

model training time is expected. While not fit for deployment, we envision such a model being useful for

development purposes where additional training images need to be generated. In such situations, where

GPUs are more accessible, this model can be used with significant impact.

4.7 Impact

We believe that the model we have built throughout this project has considerable implications in the security

and monitoring space.

TensorFlow [48], the library upon which the model is built (using Python [49]), allows us to deploy this model

to either the cloud or to any individual’s computer. Unlike training the model, which is a time-consuming

process as the weights need to be constantly updated and re-evaluated, deploying and running the model

with fixed parameters is something that almost any computer can do in close to real-time. The ubiquity of

computing power and the ease of access to such devices means that once a model has been trained, frames

coming from multiple cameras can be analysed as they are being received, using a relatively inexpensive

set-up.

This anomaly detection system can be deployed and used by anyone, from small shopkeepers who need to

ensure their store’s safety to companies that need to monitor their warehouses to governments that need
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to stay vigilant on their streets. CCTV cameras are already present in an overwhelmingly large quantity

throughout our cities ([3] [4]). This system allows us to effectively utilise the infrastructure that has already

been laid down to enable intelligent and efficient detection of anomalous events that will bolster security at

a minimal expense to those in charge of these premises.
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Chapter 5

Conclusion

In summary, through the work done in this thesis, we have tested two prevalent machine learning archi-

tectures, both of which are unsupervised, to develop an automatic anomaly detection system that uses

the reconstruction error of images as the primary metric to perform binary classification of the images into

anomalous and non-anomalous (normal) images. The GAN based method was not as successful as we initially

hypothesised, which we attribute to the myriad of problems that GANs face during training. Our second

approach, based on autoencoders, resulted in a much more performant model that achieved excellent metric

scores and easily beat the previous sUAE model without any significant drawbacks. The high performance

of our AE model makes it relatively easy to train and even more easier to deploy on the field. This model

has the potential to drastically increase the effectiveness of security and surveillance systems by lowering the

barrier of entry and making such systems accessible to everyone.
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Appendix A

List of Performance Figures

The first set of graphs correspond to the AUROC graphs for the datasets abbey, beach, castro, meteornight,

otter and volcano respectively. The second set corresponds to the AUPRC graphs, while the final set

corresponds to the frame level predicitions made by each model, following the previously mentioned order.

The graphs for motorway and tractor have already been provided in Section 4.1.
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